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A Deterministic Method for Profile Retrievals
From Hyperspectral Satellite Measurements

Prabhat K. Koner, Member, IEEE, Andrew R. Harris, and Prasanjit Dash

Abstract—Different aspects of the operational constraints of re-
mote sensing inverse problems are thoroughly investigated by sim-
ulation studies, using a deterministic method, namely regularized
total least squares (RTLS). For demonstration purposes, water
vapor profiles retrievals from simulated Suomi NPP Cross-track
Infrared Souder (CrIS) hyperspectral measurements are consid-
ered. Synthetic CrIS radiances are generated using a line-by-line
radiative transfer model (GENSPECT) with ∼424 realistic ra-
diosonde profiles and US 1976 standard atmosphere as inputs.
These results are also compared with those from a prevalent
stochastic method. Our findings show that the stochastic method,
even with additional deterministic constraints (truncated singular
value decomposition) applied on top of it, is often unable to pro-
duce useful retrieval results, i.e., posterior error is more than the
a priori error. In contrast, RTLS is able to produce deterministi-
cally unique results according to the available information content
in the measurements, which could result in a paradigm shift in
operational satellite inversion.

Index Terms—Hyperspectral infrared sounding, ill-conditioned
inverse, regularized total least squares (RTLS), Suomi NPP Cross-
track Infrared Souder (CrIS).

I. INTRODUCTION

MODERN hyperspectral sounding instruments have high
information content. In particular, the information-rich

Cross-track Infrared Sounder (CrIS) measurements onboard
NPP Suomi satellite has a high SNR and offers great potential
to rigorously characterize atmospheric composition. However,
much of this potential remains unrealized primarily because
of the choice of the operationally implemented inverse meth-
ods, most of which are based on stochastic approaches where
errors are treated as finite information and are used as input
parameters for parameter estimation. There are two prevalent
schools of thought in the realm of parameter estimation [1]–[3]:
1) deterministic; and 2) stochastic. Deterministic methods as-
sume that there is a true value for all individually retrieved
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parameters and each has an associated error. These methods
have been derived at individual measurement instance using
minimization of an objective function (requiring a functional
form of the forward model) representing data misfit (measure-
ment error) in a given norm. Stochastic methods assume that
all retrieved parameter values and measurements are uncertain.
Consequently, parameters are retrieved for a set of measure-
ments instances using either Bayesian probability theory, or
1-D variational principle, or Levenberg–Marquardt (LM) op-
timization, or chi-square minimization, all of which are con-
strained by error covariances or by employing regression. Some
stochastic methods require a functional form of the forward
model and some do not. While stochastic methods are suc-
cessfully used for parameterization of many scientific processes
when mature forward models do not exist, this paper focuses on
the consequence of the stochastic methods for remote sensing
inverse problem where mature radiative transfer (RT) physics is
available.

Most operational satellite hyperspectral profile retrievals are
based on stochastic methods (e.g., [4]–[10]), where the quality
of retrieval at the individual pixel level is inherently lower than
optimal due to the basic assumptions in their derivation. Most
of these techniques use a priori information to constrain the
solution through atmospheric covariance statistics and a priori
estimates of the retrieved parameters. Sometimes, ensemble
average a priori data are used to solve the inverse problem for
what is a highly dynamic atmospheric/oceanographic system.
In the deterministic viewpoint, truth is effectively known when
both “a priori” and “a priori error” are known at single mea-
surement instance. Put another way, a priori errors specified
in stochastic methods are probability distributions and will
therefore generally be an overestimation or underestimation at
single measurement instance. Moreover, nonlinear RT prob-
lems are prevalently solved by applying Bayesian conditional
probability theory or perhaps LM with error covariance con-
straints, where it is implicitly assumed that the characteristics
of the error distributions are perfectly known. However, in
reality, it is extremely difficult to accurately estimate the er-
rors for the inversion of satellite measurements based on RT
physics because there may be contributions from many sources,
namely: instrument error, forward model error, spectral error,
line shape error (line overlapping, far wing effect of major
molecules, line mixing, etc.), errors from minor interfering
gases or unmodeled parameters, background RT error, and
nonlinearity error (e.g., [11]). Moreover, it is also impossible to
perform an error analysis of errors, which are input parameters
to such solution procedures. Using uncertain assumptions as
stated earlier, the information content of a highly nonlinear
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system is calculated based on linear conditional probability
theory and reports that one measurement can produce more
than one piece of information (e.g., [12]–[18]). A “model minus
observation” bias correction is typically applied to satellite
measurements to get some meaningful results (cf. [19]). An
additional disadvantage of stochastic-based retrieval is that it
needs tuning of the reference data set with an averaging kernel
of the inverse model (e.g., [19]–[25]) to render more reasonable
validation statistics. Consequently, advanced understanding of
physics and chemistry of the atmosphere may be hampered due
to lack of appropriate inverse mathematics. Mathematically ill-
posed problems can be formed under several circumstances,
e.g., error enhancement due to an ill-conditioned Jacobian,
difficulty in constructing suitable optimization schemes due to
functional complexity, mutual information separation for mul-
tiple solutions, absence of a suitable linearization scheme for
some nonlinear problems, or inadequate information in system
modelling. To investigate the aforementioned ambiguities in
the inverse problem, we will present a comparative study with
a deterministic method, for simulated profiles retrieval from
satellite hyperspectral IR measurements.

Among existing deterministic methods (e.g., [26]), the pro-
posed regularized total least squares (RTLS) is the only one
which inherently determines the optimal regularization strength
to be applied to the normal equation first-order Newtonian
inverse using all of the noise terms embedded in the residual
vector (e.g., in [11], [27]–[30]). It is worth mentioning that the
RTLS method is fundamentally different and does not belong
to either stochastic or Tikhonov regularization methods. It is
derived from the understanding of quadratic eigenvalue analysis
of matrix inversion, which is equivalent to the minimization
of the Rayleigh quotient equation [28]. The family of RTLS
methods has a well-established heritage in other branches of
science, particularly medical imaging (e.g., [31]–[35]) but has
seldom been exploited in Earth observation science to date.
In contrast to RTLS, the theory of traditional stochastic meth-
ods do not explicitly include any constraint to prevent noise
enhancement in the state-space parameters from the existing
noise in measurement space for an inversion with a high ill-
conditioned Jacobian. To stabilize the noise propagation into
parameter space, a recent trend has been to use additional
constraints, which have a questionable sound scientific basis, on
top of the existing stochastic method (e.g., [36]–[41]). This may
be regarded as something of a band-aid approach to ameliorate
the effects for the chosen inverse method. This approach, where
error is ambiguously treated as definite information (and is used
as an input parameter) in conjunction with some deterministic
constraint, is argued as a way to select the best of both ap-
proaches (stochastic and deterministic). It can overcome some
of the limitations of stochastic method but that is more an indi-
cator of flaws in the underlying assumptions. Inclusion of this
additional step increases complexity, numerical calculations/
noise, and ambiguities, as well as information loss due to
discarding of smaller singular value components from the in-
version when truncated singular value decomposition (TSVD)
is applied. On the other hand, without the need to reduce the
model resolution, RTLS injects additional information into the
inversion by employing a Laplacian first derivative operator

(LFDO) as a stabilizer. LFDO constrains the solution since the
update of adjacent atmospheric parameters in a profile are close,
which is less harmful than the use of an a priori of what are
significantly dynamic atmospheric parameters. The final RTLS
solution is totally independent of the IG parameters of targeted
retrievals, and regularization is data driven at all iterations.

We have previously shown that satellite remote sensing re-
trieval problems can be uniquely solved using the RTLS method
for simulated retrievals (IR and microwave) and balloon-based
hyperspectral IR measurements [11], [42]. Recently, we have
also successfully implemented a similar algorithm (termed
modified total least squares) in an operational environment [43]
for sea surface temperature (SST) retrievals, which is a com-
paratively low ill-conditioned problem. This implementation
has been in effect since August 2013 for operational geosta-
tionary satellites at the office of the satellite product operation
(OSPO), NOAA. This paradigm shift in operational inverse
method is providing near-real-time high-quality SST data to the
community with a 50% reduction in error, as compared with
the previous stochastic (regression) method. In this paper, we
will discuss water-vapor profile retrieval from simulated CrIS
measurements, considering various operational constraints.

II. INVERSE MODEL

Although the RT equation is highly nonlinear, particularly
for strong absorption regions, any inverse method approxi-
mates the system as locally linear for a single iteration and
solves the problems using multiple Newtonian iterations for the
Hamiltonian function. A linearized inverse problem thus can be
formulated using the residual between observation and model as

Δy = KΔx (1)

where x is a model state vector (i.e., parameters of interest),
and y is a vector of instrument channel radiances. Thus, Δx is
the difference between the IG and the true state of parameter/s
(i.e., what we are trying to retrieve), and Δy is the difference
between the observed radiances and those calculated by RTM
using an IG of the full model state from ancillary data, of which
the targeted parameters are usually a subset. The notation K
denotes the Jacobian (partial derivatives of channel radiances
with respect to the targeted parameters). The least-squares (LS)
solution [44] is

Δx = (KTK)
−1
KTΔy. (2)

Since the RT problem is inherently ill conditioned, LS is
potentially vulnerable to noise amplification from the mea-
surement space to the state space for any satellite retrieval
problem (e.g., [45]) because measurement (Δyδ = Δy + δy)
always contains noise (δy). However, this measurement noise
is not the only source of error involved with such retrieval
problems. For instance, Koner et al. [42] demonstrated that, for
any ill-conditioned linear inversion, the amount of error in the
state-space parameters is directly proportional to the condition
number of the Jacobian, and all errors associated with this
inversion, which can be written as

‖e‖ ≤ κ Σ‖δEi‖ (3)
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where e is the realization of error in the retrieved parameters,
κ is the condition number of the Jacobian, and δEi represents
errors associated in the inversion including errors in Jacobian,
forward model, measurements, and ancillary data. This error
enhancement in retrieved space can be mitigated theoretically
in two different ways.

The deterministic approach to minimize the propagation of
error into the parameter space involves employing a regular-
ization operator, using some constraints or numerical approxi-
mations, to reduce the condition number of the inverted matrix
(KTK) of (2). A large numbers of different regularization
algorithms, namely, Tikhonov, regularized Gauss–Newton, LM,
TSVD, etc., are available in the literature. Among the various
deterministic methods, the total least square (TLS) method
has a distinct advantage of being data driven to determine the
regularization strength. Although TLS has first been used only
in recent decades [46], [47], this fitting concept has been long
referred in the statistical literature under different names, e.g.,
orthogonal regression or errors in variables. However, despite
its long use in statistical inversion, a deterministic form of TLS
has only recently been derived using linear algebra. TLS can
be derived using simple linear algebra considering the error in
measurement and Jacobian in (1).

The full derivation of deterministic TLS is presented in [43],
and a summary of the key points is reproduced here to facilitate
review. An optimization of two variables has been considered
for the derivation of the TLS method as follows:

min

‖δK‖, ‖δy‖,x
{
‖δK‖2 + ‖δy‖2

}
subject to(K − δK)Δx = Δyδ − δy. (4)

Only the TLS method considers Jacobian error in its opti-
mization, which is most appropriate for RT problems since they
are inherently nonlinear. Generally, all inverse methods solve
some linear equations as stated in (1) using a suitable lineariza-
tion scheme. It is easily justifiable to consider the Jacobian error
in accounting for nonlinearity error in the linearization point.
After performing a few steps of matrix algebra on (4), in a
simple form, the TLS method is given as

Δx = (KTK + λI)
−1
KTΔyδ (5)

where λ is the lowest singular value of the matrix [K Δyδ] and
I is the identity matrix. Since the present RT problem is highly
ill-conditioned, employing the TLS method, the condition num-
ber of the inverted matrix in (5) is reduced but not sufficient to
prevent noise amplification from measurement to state spaces
within a permissible range for the next iteration. Thus, the
regularized TLS or truncated TLS are most commonly used
(e.g., [11], [27]–[35], [42], [48]) to minimize the effect of
ill-conditioning on resulting solutions. The full derivation of
RTLS, which will be used here, is presented in Koner and
Drummond [11]. The mathematical formulation of the RTLS
for a linear problem where the number of measurements are
more than that of the state-space parameters (e.g., [28], [29]) is

min

Δx ∈ X
φ(x,y) :=

‖KΔx −Δy‖2
1 + ‖Δx‖2

subject to‖LΔx‖2 ≤ δ2. (6)

The term L denotes the regularization operator, φ(x,y) is
the cost function, and δ is infinitesimal. After performing a few
steps of matrix algebra, the form of RTLS can be written as

Δx =
(
KTK − g(x)I +αLTL

)−1
KTΔyδ (7)

where g(x) = ‖yδ −KΔx‖2/(1 + ‖Δx‖2), α is regulariza-
tion strength, and I is the identity matrix. For the calculation of
g(x), an update of x is required, which is obtained as Δx = 0
for the first iteration and the retrieved Δx for successive itera-
tions. Although considering Δx = 0 for the first iteration, the
second regularization term of RTLS stabilizes the solution by
the value of α, which is calculated using the same value of Δx.
Thus, any underestimate or overestimate of Δx is compensated
by the value of α. Some literature defines the RTLS as a dual-
regularized method. The success of any regularization method
is dependent on the regularization strength and characteristics
of the regularization operator. We use a LFDO as a stabilizer
[L in (7)] that, in the case of a profile retrieval problem,
provides additional information and is a better approximation
compared with the regularization using the identity matrix [49].
Using LFDO, this is realized by forcing values of the update
of adjacent points within a profile to be close. Moreover, in
practice, it is difficult to develop a mathematical derivation for
a nonlinear problem, which is what the RT equation inherently
is. Thus, in this calculations, the I matrix is replaced by the L
matrix in (7).

The regularization strength (α) of the RTLS method is data
driven and is calculated from the residual vector as follows:

W = L−T
(
KTK − g(x)L

)
L−1. (8)

The lowest singular value of the matrix W has been shown to
provide the optimal regularization strength [28]. For a measure-
ment instance, the optimal regularization strength is calculated
at all iterations to block the nonlinear error injection into the
retrieved space, and to restrict propagation of other errors as
described earlier for all measurement instances. Additionally,
we used a line search method to control the step size and
convergence. We also use three different criteria to reduce the
required number of iterations to obtain convergence [42].

Information content can be calculated in [50] and [51] in
terms of degree of freedom in retrieval (DFR) as

DFR = trace(Rkm) (9)

where Rkm is the regularized kernel matrix, which is basically
the model resolution matrix [51]. The expression for Rkm is
given as (KTK− g(x)I+αLTL)

−1
KTK.

An alternative to the deterministic approach that is used to
ameliorate this issue (ill-conditioned inversion) is to provide
errors as inputs into the inverse model. The error propagation
to the state space will inevitably be zero for any ill-conditioned
inversion when total error (ε =

∑
‖δEi‖) is zero, as speci-

fied in (3). Since an ill-conditioned matrix, until it becomes
rank deficient (e.g., condition number exceeds 1016 for double
precision calculations) can still be accurately inverted if the
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errors associated with observations are accurately known, the
inversion of such a problem can be simply derived as follows:

Δyδ − ε = KΔx (10)

where ε is the total errors involved in an inverse problem. It is
not feasible to determine the exact errors associated within any
inverse problem. Even if the magnitudes of errors could be es-
timated accurately for simulation purposes, the corresponding
signs cannot be determined (if they could be, there would be
no need for a retrieval). To minimize these errors in an inver-
sion, LS optimization is necessary. Using matrix algebra and
employing LS minimization of (10), it can be derived as [43]

Δx = (KT ε−2K +Δx−2)
−1
KT ε−2Δyδ. (11)

It may seem surprising that Δx is required to determine the
value of Δx in such a formulation. In practice, per-pixel exact
values of ε and Δx are not available to solve this problem.
Therefore, if one assumes that Δx has a Gaussian distribution
for a set of measurement, representative values of this error
(e.g., full width at half maximum (FWHM) of the distribution)
can be used in (11). This is what is often done in practice in
stochastic methods and such approximation of a priori errors
referred to as a priori covariance Sa. Similarly, representative
errors in observations for the same set of measurements are
also specified as measurement error covariance Se in stochastic
approaches. Although the optimal estimation method (OEM)
[52] is derived using Bayes’ probability theorem, (11) (derived
with simple linear algebra) is effectively identical to the OEM
formulation. The success of OEM retrieval depends on the
accuracy of a priori and a priori covariance. However, a funda-
mental concern, from a deterministic point of view, is that the
truth is essentially known when a priori and a priori covariance
are accurately known at the pixel level.

Another uncertain outcome of OEM results arises from its
reliance on the measurement and a-priori errors, which are
specified as inputs. For example, when these two errors match
well with reality, the retrievals will be accurate, but such in-
stances are obviously left to chance and can neither be identified
nor ensured. Despite the issues stated above, this is widely used
in remote sensing inverse problems, perhaps because it has not
been analyzed from the deterministic point of view due to over-
reliance on the Bayesian conditional probability concept. For
example, according to the algorithm theoretical basis document
(ATBD) for CrIS [38], retrieval of level-2 (L2) environmental
data records (EDRs) is based on the Bayesian inverse method

xi+1 = xa +
(
KTS−1

e K + S−1
a

)−1
KTS−1

e

× ((yδ − yi) +K(xi − xa)) (12)

where xi+1 is the state-space parameter at ith iteration; K is
the Jacobian; S−1

e is the measurement error covariance; S−1
a is

the a priori covariance; xa is the a priori of the state space; yi
denotes simulated model calculation at the ith iteration, and yδ

is the measurement.

III. DISCRETIZED RADIATIVE TRANSFER MODEL

A measurement can be considered equivalent to a model
output if a compatible model exists. The model consists of
a set of parameters embedded in a mathematical framework.
In this context, it is safe to state that RT modeling (RTM)
for atmospheric problems using line-by-line (LBL) calculations
has reached a fairly high level of maturity.

The theoretical foundation of the IR remote sensing forward
model is Schwarzschild’s equation of RT. In a nonscattering
atmosphere under local thermodynamic equilibrium, which
means that the atmosphere behaves like a gray body, the basic
equation governing the transfer of emitted thermal IR radiance
at nadir that reach the top of the atmosphere (TOA) (cf. [53]) at
a given wavenumber ν can be described by

Iυ = εBυ(Ts, ps)τ(ps) +

0∫
ps

Bυ(T, p)Δτ(p)

− (1− ε)

0∫
ps

Bυ(T, p)Δτ∗(p) (13)

where B is the Planck’s function; ε is spectral emissivity; T s

is the surface skin temperature; T and p are the temperature
and pressure of the atmospheric grids, respectively; τ (p) is the
upwelling layer transmittance; and τ ∗(p) = τ (ps)

2/τ (p) is the
downwelling transmittance. The reflected IR solar radiation is
considered negligible for bands with wavelength longer than
4 μm during the day. The emissivity of the sea surface in
the thermal IR region is generally close to unity. Under these
assumptions

Iυ = εeffBυ(Ts, ps)τ(ps) +

0∫
ps

Bυ(T, p)Δτ(p) (14)

where

εeff = εs −
1− εs

Bυ(Ts, ps)

0∫
ps

Bυ(T, p)Δτ∗(p). (15)

A Fourier transform spectroscopic instrument typically
works in the IR spectral region and measures the radiance at
a finite number of spectral points with estimated equidistant
wavenumbers. Therefore, a suitable discretization process is
used over the integrals (14) and (15). There are many different
discretization possibilities: simple classic quadrature method,
collocation points and nodes, degenerate kernel approximations
(by eigenfunctions or by orthonormal systems or approxima-
tion by Taylor series or interpolation), and projection meth-
ods (Galerkin moment or least squares). We have employed
GENSPECT [54] for our forward modeling, which is an LBL
RTM that uses a degenerate kernel function for interpolation.
The discretization process of RT equations leads to a set of
nonlinear system of equations, which are in a Hilbert space.

As a test bed, we have considered the sensor specifications
of CrIS hyperspectral sounder onboard Suomi NPP (http://npp.
gsfc.nasa.gov/cris.html), which is based on Fourier transform
spectroscopy in the IR (FTIR). For real data from CrIS, channel

http://npp.gsfc.nasa.gov/cris.html
http://npp.gsfc.nasa.gov/cris.html
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radiance is given by a convolution of the instrument line shape
(ILS) function with the monochromatic radiance at the entrance
to the interferometer. It is a common practice to suppress
ringing in the spectrum by apodizing the modulation function
[55], artificially reducing the abruptness of the interferogram
clipping by forcing the windowing function to tend smoothly
to zero at the extremes. For this simulated study, a simplified
“sinc” ILS is considered to produce equivalent CrIS measure-
ments by convolving with the simulated spectrum.

IV. SIMULATION STUDY

Radiative transfer equations are highly complex functions
that cannot be approximated by a particular class of function
(e.g., quadratic, convex, logarithmic). Thus, it is very difficult to
prove theoretically (i.e., only by mathematical derivation) that
RTLS is a better choice (over OEM) for RT-based hyperspec-
tral satellite profile retrievals. It is also difficult to prove the
superiority of RTLS over OEM using satellite measurements
because the selection of a “correct error covariance” for OEM
(e.g., residual cloud contamination may not be considered an
observation error) is debatable. To overcome these hurdles, we
will use simulated retrievals to demonstrate the proof of concept
of our proposed method because we have more control over var-
ious parameters for numerical experiments. Simulations have
the benefit of allowing us to either exclude or include regulated
operational problems (calibration, forward model error, cloud
detection, etc.) and focus on the performance of the inversion
method itself.

We consider simulated water vapor (WV) profile retrievals,
not least because retrieval of WV profiles from satellite mea-
surements is a challenging problem. WV lines are ubiquitous
across most of the IR region, and accurate estimation of the
WV profile is a prerequisite for many climate and atmospheric
studies, as well as for retrieval of other geophysical parame-
ters from satellite measurements. Upper air estimates of WV
profiles are designated by Global Climate Observation System
(GCOS) as an essential climate variable (ECV), for a variety
of reasons. WV is the most globally variable greenhouse gas,
and its variation and evolution are sources of critical direct
and indirect radiative forcing feedback, the latter via effects
on cloud cover, as well as exerting a controlling influence on
other key ECVs, such as precipitation. There are abundant
global variations in WV profiles, and characterizing a priori
variance of the WV profile is a challenge in itself but remains a
prerequisite for implementing OEM.

A. Simulated Measurements

We have calculated the spectra using only WV at a resolution
of 0.05 cm−1 using the GENSPECT LBL model [54], for the
US 1976 standard atmospheric temperature and WV profiles,
and surface temperature of 300 K and surface emissivity of one
as shown in Fig. 1.

To reach a more realistic condition, we have also studied the
contaminated radiance from other interfering trace gases using
model profiles of 28 different trace gases from Modtran4.3
(cf. [56]). For example, a selected window (1230–1385 cm−1)
is shown in Fig. 2. The radiances are calculated using standard

Fig. 1. Sample of simulated CrIS measurements (∗green) using LBL forward
model with a spectral resolution of 0.05 cm−1 (Blue) and convolved with the
sinc ILS.

Fig. 2. Simulated spectrum of CrIS measurement with all interfering trace
gases (blue) and without trace gases (red) and selection of channels (∗green),
where SNR is greater than 100.

atmospheric profiles of all these gases (blue) and only using
H2O (red). It is found from this paper that many CrIS channels
are subject to contamination by absorption due to various trace
gases within this window. There are three alternatives in such
a situation: 1) Use all interfering trace gases in the forward
model simulation; 2) model all gases but the approximated
error is applied at the level of error covariance to which the
other gases are uncertain; and 3) discard the channels that are
affected by an amount more than assumed threshold value. It is
very difficult to obtain correct profiles of all interfering gases
at the time of measurement and computational cost increases
if the first choice is considered. From a deterministic point of
view, weighted measurement using variable values of elements
in error covariance, as described in the second choice above,
cannot remove channel errors where interfering gases increase
the measurement error relative to the target parameter. In such
a process, both ambiguities in retrieval and computational cost
are increased. Thus, for this experiment, we have opted for a
third choice, i.e., a threshold value of 100 for SNR is considered
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that leaves only 29 out of 121 channels (shown in ∗green in
Fig. 2) for our numerical experiment.

It is very difficult to get sufficient information to solve the
WV profile of all atmospheric levels using only 29 channels
in midwave IR (MWIR) of the CrIS measurement. Thus, we
searched the information-rich channels for WV profile re-
trievals using the aforementioned approach for different bands
of CrIS measurements, i.e., 40 channels from the long-wave IR
region (700–960 cm−1) for upper tropospheric WV information
and 140 channels from the MWIR region (1230–1625 cm−1) for
mid tropospheric WV information. For this simulation, we did
not consider any channel from the short-wave IR region to avoid
additional modeling of the effect of solar scattering during
daytime. A similar channel selection approach has been already
used to retrieve different trace gases from balloon-based remote
sensing FTIR measurements [11]. These selected channels may
be somewhat incomplete for practical application but should be
more than adequate for the intended purpose of comparing the
inverse methods of RTLS and OEM. The present set of channels
is unable to uniquely solve for the upper tropospheric region
due lack of sufficient information in this region, which we will
explore under a deterministic framework in future work.

B. Simulated Retrievals Using Fixed Profiles

Retrievals adding Monte Carlo noise in the simulated spec-
trum have been made using two different methods, i.e., RTLS
and OEM, for three different true profiles (TPs), which are
TP1 (realistic), TP2, and TP3 (sinusoidal profiles). TP1 is a
U.S. standard WV profile for the Earth’s atmosphere, and we
have used two initial guess (IG) profiles: One is constant (IG1)
and the other is realistic (close to TP1, IG2), shown in black
and magenta, respectively (see Fig. 3). The number of altitude
level is 16 for all profiles. We used three different Monte Carlo
noise realizations of 1% (SNR = 100) in measurements, which
is somewhat a conservative estimate since SNR is more than
150 for MWIR channels of CrIS (e.g., [57], [58]). Retrieval
using OEM has initially been made considering a diagonal
covariance matrix with the values of 100% a priori variance, for
the profiles solved from IG1 because all of the truth is inevitably
within the range of 100% variance of the IG1. For solving TP1
from IG2, a priori variance of 30% is used for OEM. As is
typical, the IG profile is considered as the a priori profile, and
error covariance is calculated according to the noise added into
simulated measurements. All three profiles are solved using
RTLS from IG1. Note that we did not guarantee that the
a priori/IG is within the error domain of a posterior, and the
shape of the a priori profile is close to truth, which are typical
current practices (e.g., [22], [59], and [60]).

For more than three decades, remote sensing RT-based re-
trieval theories (e.g., [52] and [61]) are dominated by stochastic
methods and claim that there exists no unique solution. How-
ever, recent published work on remote sensing retrieval (e.g.,
[62]) shows that there exist unique solutions for such problems
when using deterministic inverse methods, within the limit of
information content. For example, a full sinusoidal profile can-
not be solved by the present retrieval model because this model
has three to four independent pieces of information, and at least

Fig. 3. Simulated retrieval using RTLS and OEM: three TPs (+solid black);
RTLS solution (red solid) for all TPs from IGof IG1 (black solid); OEM
solution: OEM1 (green solid) from IG1 for all TPs and OEM2 (blue) using
IG2 (magenta) for realistic profile.

five pieces of information are required to solve a full sinusoidal
profile. The present experiment follows the published retrieval
theories on two different approaches (deterministic and sto-
chastic). Fig. 3 shows that the RTLS method produces unique
solutions for all three different profiles (TP1, TP2, and TP3)
from a fixed IG profile (IG1), and it does not require a priori
and observation error covariance matrices or, as demonstrated
by use of IG1, even a representative a priori profile. We have
used another realistic IG (IG2) for solution of only the TP1 case
using OEM to verify the impact of IG in the OEM solution. All
four OEM solutions, including the solution of TP1 from IG2,
are outside the solution space (> 300% error), and additional
boundary constraints (10−6 to 0.05) are required for OEM
(Fig. 3). This illustrates that OEM is not an appropriate method
for such problems. This can be explained from the deterministic
viewpoint by arguing that using a combination of a priori and
measurement error covariance matrices is unable to regularize
the inverse problem adequately. The underlying cause is its
inability to reduce the noise propagation from measurement
space to state space for such an ill-conditioned inversion. Put
another way, without an optimally regularized inverted matrix,
even choosing a priori close to the truth may yield out-of-range
solutions for a highly ill-conditioned inversion.

Exploring the cause of OEM failure from a deterministic point
of view, regularization strength increases with an increasing
value of measurement error covariance or a decreasing value of
a priori error covariance in OEM formulation. The information
from the measurement reduces with an increase in regular-
ization strength, but this regularization is required to prevent
noise propagation into the state space to obtain solutions at
least within the range. We have already reported [49] results of
similar profile retrievals from hyperspectral measurements us-
ing systematic (not arbitrarily) optimal regularization strength
into the OEM formulation, without satisfactory success. Thus,
to further demonstrate the real cause of this failure, we have
conducted another experiment to increase the effective regu-
larization strength of OEM by changing the a priori variance
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Fig. 4. Same as in Fig. 3 but for increased regularization strength (a priori
variance of 1%) of OEM-like solution.

arbitrarily to 1% instead of 100%, and keeping all other param-
eters fixed in (12), whose results are discussed next.

Fig. 4 shows that, in general, the OEM solutions are now
within the domain of the solution space and the oscillations
have reduced. For TP1 (from IG2 that is close to truth), OEM
yields modest results at least up to an altitude of 250 mb.
However, from IG1, OEM cannot satisfactorily solve any of
the profiles (erratic shape with respect to the TPs). [This may
be attributed to the effect of another constraint in OEM, given
as xa in the last term of (12)] This confirms that our previous
solutions using OEM (see Fig. 3) were affected by low regu-
larization. It is the high condition number of the problem that
caused the oscillations. The condition number of the Jacobian
for the present example (see Figs. 3 and 4) is on the order of
103–107, depending upon the choice of the retrieval grids and
the shape of the profile. This confirms that a high regularization
is required for such problem that is achieved by using 1%
a priori covariance. However, an a priori variance of 1% for
such a problem cannot be justified by any arguments in the
domain of stochastic theory (e.g., OEM). On the contrary, it
can be easily discussed from the deterministic viewpoint that
the square root of the condition number of the inverted matrix
(KTS−1

e K + S−1
a ) though reduced is still quite high (∼400

from∼105 in original Jacobian) when 100% a priori covariance
is used. Using (3), it is evident that 1% error in measurement
can yield a state space error by 400% (condition number 400 of
the inverted matrix multiplied by a measurement error of 1%).
Similarly, when 1% a priori covariance is used the condition
number of inverted matrix is ∼10, and the expected state space
error is ∼10%. However, regularization error will be high for
such instances of excessive regularization (1% covariance),
which is discussed in the following.

Another complexity for regularization arises from the in-
herent properties of the chosen stabilizer. It can be confirmed
(see Fig. 4) that increasing the regularization strength stabilizes
the solution but concomitantly reduces the information by
introducing regularization error. Thus, the type of stabilizer and
optimal regularization strength for all iterative steps are the
most important factors for obtaining a unique solution. RTLS

Fig. 5. Row space of regularized kernel matrix of RTLS at the last iteration for
three different profiles.

inherently calculates the required strength of regularizations at
all iterations using LFDO as the stabilizer, which injects very
low regularization error by its own characteristics for profile
retrievals and drastically reduces the condition number of the
inverted matrix. We find that the value of the square root of the
condition number of the RTLS inverted matrix is never more
than 15. In contrast, using covariance matrices of a priori and
measurement error as a stabilizer for OEM does not appear to
be functioning effectively.

To better understand the total information content in such
retrievals, DFR at the last iteration for three different profiles
are calculated using (9). It is found that the information content
is dependent on the shape of the profile, and the values of DFR
for three different profiles are 3.88, 2.61, and 2.68, respectively.
Moreover, the altitudinal information varies with the shape of
the profile as shown in Fig. 5, which is the row space distribu-
tion of the regularized kernel matrix Rkm at the last iteration.
Two peaks are observed for profile 1 at around 900 mb and
400–600 mb; however, the negative value of Rkm for the height
of 400–600 mb raises concern about whether it is real informa-
tion or pseudoinformation. In contrast, the other two profiles
have very little information for height of 400–600 mb. More
research is required to understand and resolve these issues.

There might be some concerns that the aforementioned nu-
merical experiments are unfair because the OEM method is
based on an a priori and to set up a problem with a range of
100% a priori variance renders the a priori information con-
tent meaningless. Second, according to the physics of Earth’s
atmosphere, the two sinusoidal profiles and a priori profile
(IG1) do not exist in reality [note that we also have used
realistic IGs and TPs]. However, we have purposefully done this
simulated experiment to understand the RT inverse function,
and it does not violate any limits from the point of RT physics.
It is quite obvious that parameters can go beyond the boundary
for a specific iteration when Newtonian iterative optimization is
used in a nonlinear problem. Moreover, purposefully choosing
sinusoidal profiles gives us an additional advantage to un-
derstand and analyze altitudinal information content for such
measurements (see Fig. 5).
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Fig. 6. (a) Shape of radiosonde profiles (blue) used in this study and assumed IGprofile (green); (b) histogram of the logarithmic of percentage of departure all
truth from the IG; VMRwv stands for volume mixing ratio of WV.

C. Simulated Retrievals Using Radiosonde Profiles

To address any potential concerns due to selection of unreal-
istic profiles so far, we conducted retrievals using the Forecast
Systems Laboratory (FSL) radiosonde database (http://www.
esrl.noaa.gov/raobs/intl/fsl_format-new.cgi) representative of
the Earth’s atmosphere, in conjunction with other collocated
in situ parameters (e.g., SST). We have collected more than
400 profiles from this database to perform this simulation and
assumed emissivity of one for all. A plot of all the profiles
is shown in Fig. 6(a), and an approximated average profile is
considered a priori [green line in Fig. 6(a)] for this simulated
retrieval study. We have also calculated the a priori covariances
using FWHM of the departure of these profiles from the as-
sumed a priori [see Fig. 6(b)]. The simulation has been made on
the grid of the individual radiosonde profiles; thus, the different
atmospheric grids are considered for different profile retrievals.
First, two good profiles are selected from the in situ database
(based on arbitrary visual inspection) for WV retrievals from a
fixed IG profile that lies within the domain of the realistic WV
profiles.

A recent trend has developed to improve stochastic retrievals
by applying additional constraints using either a finite differ-
ence operator (e.g., MIPAS [39]–[41]) or TSVD (e.g., CrIS
[38]) on top of the stochastic methods to reduce the oscillations
in the resultant solutions. However, the ambiguities, as we
discussed earlier, for the selection of error covariances and the
a priori dependence still exist for either case. In particular,
the estimation of nonlinearity error for such method, which
has to be supplied as an input parameter, is very difficult. On
the contrary, as mentioned earlier, RTLS inherently determines
the regularization strength for all iterations of different values
depending on the associated error including nonlinearity for
such inversion from the residual. TSVD is often referred to as
a reduced state space inverse method and has additional issues.
The primary idea is to reduce dimensionality and hence amelio-
rate the ill-conditioned nature of the problem by means of the
reduction of the condition number of the inverted matrix. In this
process, a large number of empirical orthogonal functions are

discarded from the retrieval space. In contrast, RTLS keeps all
of the information for state-space parameters.

The simulation study can only be used to compare the basic
inverse methods, and not the current operational algorithms
where multiple provisional tuning of both parameters and func-
tions are implemented that cannot be easily replicated in a
simulated study. For example, the nonlinearity error is difficult
to determine for a particular iteration, but it was calculated in
the EDR ATBD [38] by the multiplication of an ad hoc constant
with the value of the “model minus observation.” However,
we have conducted a similar experiment using TSVD on top
of OEM, where we fixed a 10% a priori covariance in OEM
for all profiles [shown in Fig. 6(a)], and we consider only the
five highest singular values of the inverted matrix (KTS−1

e K +
S−1
a ). The selected 10% a priori covariance for OEM cannot

be justified by any standard of stochastic approaches because
the FWHM for this set of experiment is 36% as is shown in
Fig. 6(b), but it has been considered to achieve a reasonably
high regularization into OEM solution from a deterministic
point of view, as we discussed before. Different combinations
of a priori covariance, measurement error covariance, and a
number of higher singular values can be made. While this may
have limited scientific purpose to it, we have considered the
aforementioned combination for demonstration only.

Fig. 7 shows retrieval results for the two selected profiles
using “OEM plus TSVD” (OEM-T) and RTLS. A realistic
solution is again obtained using RTLS even for the increased
number of retrieval levels, whereas OEM-T retrieved profiles
are unable to produce a decent solution. Fig. 7 demonstrates
that after discarding some state space corresponding to small
singular values, OEM-T is still not able to get reasonable
results; however, RTLS is capable of managing this by virtue
of its dynamic data driven regularization without discarding
any information from the retrieval model. It may be possible
to achieve slightly improved results by employing a closer
a priori and/or higher measurement error covariance and/or
low a priori covariance than expected by employing a trial and
error approach as part of the OEM-T for a particular profile or

http://www.esrl.noaa.gov/raobs/intl/fsl_format-new.cgi
http://www.esrl.noaa.gov/raobs/intl/fsl_format-new.cgi
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Fig. 7. Comparative simulated WV profile retrievals using RTLS (red) and
‘OEM plus TSVD’ (blue). The IG and a priori are the same (green); the truth is
shown in (black). Two profiles are separated using symbols of circle and square.
Perfect and perturbed ancillary data are separated by solid and dashed lens.

data set. However, this may fail for another case because such
tuning is unlikely to be fully objective and sufficiently general
in nature.

The question may arise at this point that the perfect ancillary
data used here will not available in an operational environment.
This issue can be addressed in two different ways: 1) simultane-
ous retrieval, which will be difficult sometimes due to increase
of the condition number of Jacobian; 2) a part-solution, adding
errors in ancillary data. To gain confidence in such cases, we
perturbed the atmospheric temperature profile with 1 K and
surface temperature with 0.5 K, randomly, and used those in the
simulation study as the “truth” as shown in Fig. 7. The retrieval
results from OEM-T are significantly different and sometimes
opposite in phase from the truth, but no noticeable difference is
found for RTLS solutions due to these additional perturbations.
Rather simply, it is because the regularization strength alters
automatically due to the increased data misfit resulting from
the errors we purposely injected into the profile. In such a
situation, the regularization will be higher than the original with
slightly reduced information content (e.g., the value of DFR
changes from 4 to 3.8) but produce a stable solution. Near to
the surface, a little difference is observed that is attributed to
low information content at this level. More thorough research
is required to increase the information content through a choice
of better channel selection under the deterministic paradigm.

In operational IR retrieval, three main factors are involved:
1) inverse method; 2) forward model; and 3) cloud detection.
There are two important points to be considered here. First, in
this paper, we have presented a comparative study of inverse
methods considering the forward model and the cloud detection
to be perfect. We have also demonstrated the sensitivity of com-
parative results for different inverse methods due to forward
model errors. Second, in our previous work [43], [63], we have
demonstrated operational geophysical parameter estimation us-
ing the same family of inverse method including the ambiguities
of the forward model and the cloud detection. However, the
earlier work dealt with a modestly ill-conditioned inversion,

Fig. 8. Comparative density scatter plots for RTLS and OEM retrievals using
424 radiosonde profiles: (a) RTLS (finer grids), (b) RTLS (coarser grids),
(c) OEM plus TSVD (finer grids with 10% a priori covariance), and (d) OEM
plus TSVD at finer grids with 1% a priori covariance.

whereas this paper solves a highly ill-conditioned problem.
The error propagation into retrieval space is proportional to the
condition number of Jacobian for any inverse problem, which
is scientifically demonstrated using a mathematical derivation
[42]. Thus, the condition number of the Jacobian is a key
factor for any inverse problem but not for forward model or
cloud detection problem. Combining these two points, one
can reasonably conclude that the RTLS method can be a vi-
able contender for operational satellite remote sensing inverse
applications.

Simulated retrievals of more than 400 profiles from the
aforementioned FSL database are made using both RTLS and
OEM-T from a fixed IG (as in Fig. 7), and the density scatter
plot is shown in Fig. 8. As we observed in Fig. 4, the close to
a priori and smooth profile can be solved by OEM using 1%
a priori covariance; thus, we have added an additional experi-
ment by reducing the a priori covariance to 1% (cf. the previous
OEM-T). Using multiple real-life profiles extends the scope
of the experiment beyond the initial theoretical study using
selected profiles and strengthens our confidence in the RTLS
method. Fig. 8 shows that RTLS can retrieve parameters (with
associated error), but these have far fewer errors than those from
OEM-T solution. One may argue here that the choice of a priori
and a priori covariance in this experiment is not “favorable”
for optimal working of the OEM-T. However, in reality it is
also harder to get these parameters accurately because of highly
dynamic atmospheric conditions, which are not at all required
for obtaining good solutions using RTLS.

As discussed above, OEM-T is often unable to produce rea-
sonable solutions due to limitations of its fundamental under-
standing. However, some operational validation results of CrIS
WV profiles, retrieved using stochastic approach (OEM-T),
have been recently published [19], [23], which report re-
trieval errors against radiosonde observations varying between
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35–80% at different altitudes. On the other hand, our simu-
lated retrieval error using 1% a priori covariance in OEM-T
is higher than those results, which inspires us to understand
the additional ad-hoc tweaking performed in the operational
realm. It has been observed that OEM-T is highly popular to
obtain seemingly meaningful results, and additional constraints
are enforced using potentially ambiguous scientific assump-
tions, such as, “model minus observation” bias correction,
and tuning either a priori or measurement error covariance
matrices or both. From a deterministic point of view, “model
minus observation” bias correction may result in alteration of
functional physics relationships, Jacobian mismatch error, and
information/residual loss [43]. In addition to all of these, if the
radiance difference between the observation and calculation for
a particular spectral channel does not agree to the expected
value within the instrument noise plus forward model error,
then an additional error term is added to the corresponding
diagonal element of the measurement error covariance [19].
However, such an approach is neither rigorously justifiable nor
required in our simulated retrieval experiments where all the
parameters are known.

The most interesting aspect of these validation studies is that
they have been made using tuned reference data sets with many
ambiguous mathematical constraints and after discarding a sig-
nificant number of retrievals for the sake of quality control (e.g.,
Chi-squares test). The primary concern here is manipulation of
the reference data set: First, it has been altered for the sake of
uniformity of vertical gridding between reference data sets and
retrieval grids by introducing an inverse method [23]

x̃ = I [f(x, b), b, c] (16)

where x and x̃ are the true and retrieved state vectors of
radiosonde WV profile, respectively, f is the forward model
with parameters b (e.g., spectroscopy), and I is the inverse
model (i.e., retrieval). There is a strong possibility to introduce
an error into the reference data set using another ill-conditioned
inversion. Alternately, it will be less ambiguous to do this by
using a simple gas law, i.e., Curtis–Godson approximation [64],
[65]. One can argue that the spectroscopic measurement based
on RT is vulnerable to atmospheric grid spacing, but why this is
implemented for validation purposes is unclear. If the primary
use of WV profile data is for climate and weather studies, the
Curtis–Godson approximation using the gas law should suffice.
Second, tuning of the reference data set is also performed using
the a priori profile (xa) and the averaging kernel (A) that are
used for the satellite-based retrieval employing OEM-T [23] as

xmr =A(xr − xa) + xa

A =
(
KTS−1

e K+ S−1
a

)−1
KTS−1

e K (17)

where xmr is the reference data set after second tuning, and
xr is the same after first tuning. For example, as observed in
[59, Fig. 9], there is no scientifically justifiable mutual validity
between the reference data sets after and before multiplying it
with A. There does not seem to be a firm scientific basis to alter
the reference data set using (17), other than to improve vali-
dation statistics, which may impede further scientific progress.
This tuning goes even one step further: A third tuning is made

Fig. 9. (a) and (b) Comparative simulated WV profile retrievals using RTLS
(red) for finer (solid) and coarser (dashed) atmospheric grids. The IG is the
same (green); the truth is shown in (black). Two profiles are separated using
square and circle lines, respectively.

using trapezoidal basis functions (F) to map the number of
retrieval grids (m) perturbations to forward model perturba-
tions on the finer grids n(m < n) forward model layers [23]

Ac = FAF+; F+ = (FTF)
−1

FT . (18)

Smoothing of the correlative profiles x is then achieved for
by substitutingAc forA in (17). This alteration of the reference
data set ought not to be acceptable from a scientific viewpoint.
A scientifically compliant alternative could be to interpolate
(using the aforementioned techniques or by applying the simple
gas law) the retrieved data set onto the reference grid for the
purposes of validation. The main concern that we raise in this
paper is that the aforementioned unobjective controls on the
reference data set to obtain seemingly meaningful numbers
from validation may compromise the true potential of expensive
satellite missions.

The spread of RTLS solutions [see Fig. 8(a)], even if better
than that of OEM-T, is still quite high. A possible reason is
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that it is impossible to solve all grid points of radiosonde
data for altitudes where the grid spacing is less than 100 m
in some profiles. It is also observed that there are many pro-
files that are difficult to be solved using any inverse method.
To understand these issues, another numerical experiment has
been performed where the simulated measurements have been
constructed at finer grids of radiosonde data, but the problem
is solved using coarser grids [see Fig. 8(b)]. Once the syn-
thetic measurements (using finer grid) are obtained, for inverse
purposes, the RT calculation has been made at coarser grids
using Curtis–Godson approximation, which also allows us to
gain confidence in RTLS retrieval in the presence of forward
model error. (note that, essentially, there is no forward model
error in simulated retrievals in the previously shown demonstra-
tions because the grids are same for both forward and inverse
models). The broad motive is to use satellite retrieved data to
understand atmospheric phenomena that are governed mainly
by thermodynamic physics, which is what the Curtis–Godson
approximation is based on. Therefore, there should not be any
scientific issue to use such averaging. It is observed that the
average forward model error for the coarser grid is comparable
to the SNR of the measurement (100). However, this process
smoothes the radiosonde profiles using a simple gas law re-
lation (Curtis–Godson approximation) as well as reducing the
condition number of the Jacobian.

We have picked two other profiles as shown in Fig. 9(a),
which are relatively difficult to solve accurately compared with
the profiles shown in Fig. 7. The number of atmospheric grids
of two different profiles shown in Fig. 9(a) is 41 and 18. We
have reduced the number of grid points for both the profiles to
12 using the Curtis–Godson approximation. The forward model
differences of radiances between the coarser grids and original
grids in terms of the rmse are 1% and 1.2%. Despite this,
the retrievals using RTLS are more or less identical in shape
for either the coarse or fine grid [see Fig. 9(a)], but the error
statistics are lower in the coarser grid due to the averaging of
scatter points in a layer. These two profiles (close to sinusoidal)
were chosen purposefully from radiosonde measurements is
to gain insight into the dependence of a priori in the final
solution. The results show that the RTLS solution is essentially
independent of IG or a priori and grid spacing, which we
already demonstrated using arbitrary profiles.

The shape of profile 1 in Fig. 9(a) (solid circle) along the
altitude is approximately a full sinusoid in nature, and at least
five pieces of information are needed to get a representative
retrieval profile apart from the spikes. It is observed that the
applied smoothing (coarser grids) does not reduce the degrees
of freedom for these profiles, and the retrieved profiles for
both finer and coarser grids are close to the sinusoidal. In
contrast, for profile 2 in Fig. 9(b), the TP is more than one
sinusoid in nature and more than five pieces of information are
needed, at the least, to get a representative retrieval profile. It is
almost impossible to solve this by the present retrieval model,
where around three to four pieces of information are available.
On the other hand, some points of profile 1 in Fig. 9(b) are
abruptly distributed, and smoothing using the Curtis–Godson
approximation can improve the shape of the profile as a result
the reduction of maximum retrieval error or spread of the error.

Fig. 10. RMSE along the altitude (average of 2 km grid) of more than 400
profiles for RTLS with finer grids (red solid, fnr), RTLS with coarser grids (red
circle, crs), RTLS Rkm multiplied by in situ (red square), IG with finer grids
(green solid), OEM-T with finer grids with 1% a priori covariance (blue plus)
and OEM-T finer grids with 10% a priori covariance (blue solid), and OEM-T
coarser grids with 10% a priori covariance (blue circle).

In order to further understand the RTLS spread in Fig. 8(a),
we performed an error calculation for two different retrievals.
As the values of the WV profile varies by more than two
orders of magnitude, we have considered the percentage of
error as (δx/x) for individual points as described by Maddy
and Barnet [22]. The percentage of rmse for average of all
grids of these retrievals [see Fig. 9(a)] using the original grids
are 37% and 57%, and for coarser grids are 25% and 50%.
However, the absolute maximum deviation reduces from 153%
to 68% for profile 1 (circle) and from 163% to 138% for profile
2 (square) using the coarser grid. Both rmse and the spread of
the RTLS solution are reduced in coarser grids for these profiles
as observed in Fig. 8(b) [Note that the number of points in
Fig. 8(b) is 50% lower than the same of Fig. 8(a)].

The rmse of all points for a given profile in Fig. 9(b), which
are more difficult profiles to solve, are 232% and 124% for
finer grids and 31% and 207% for coarser grids, for profiles 1
and 2 respectively. For profile 2, it is observed that the error
for coarser grids is higher than for finer grids, as well as the
spread is also increased from 485% to 560% [on the contrary,
for profile 1, the spread reduced significantly from 1180% (finer
grids) to 74%, as similar to Fig. 9(a)]. It is also observed that
shapes of retrieved profile 2 in Fig. 9(b) are different for two
different grids. However, it is observed that the retrieval errors
in term of the column density for both the profiles are lower
in coarser grids. The calculated column density errors for both
profiles are 5% and 25% at finer grids and 5% and 13% at
coarser grids, respectively.

Fig. 10 shows the 2 km average [23] rmse of RTLS and
OEM-T for the finer and coarser grids without tuning the ref-
erence ‘sonde data. Any form of the RTLS error is always less
than the a priori error. The rmse values of RTLS using finer and
coarser grids are ∼50% and ∼35%, respectively, which seem
to be high. These numbers have no absolute meaning because
these statistics can be changed by the selection data set (e.g.,
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the number will be reduced if major profiles are similar to the
profiles selected in Fig. 7, where as it will be further increased
if the major profiles are similar to those selected in Fig. 9). The
profiles used here are globally representative snapshot of WV
profiles from radiosonde measurements. These statistics can be
improved by discarding the complex profiles from this data set
as bad retrievals using the total error calculation at the solution
time, which is already discussed in operational SST retrieval
[43], [65] publications. The objective of this paper is not the
reduction of statistics; rather it is a comparative study to select
the better inverse method. It is observed from this paper that
the errors of coarser grids RTLS (“red circle”) are ∼30% lower
than for the finer grid (“red dot”). Despite the increased forward
model error (spectroscopic error), averaging over points in the
coarser grid reduces retrieval error significantly compared with
the finer grid as expected. Surprisingly, error is not reduced for
OEM-T using coarser grids (“blue circle”) as compared with
finer grids (“blue dot”). The specification of the coarser grid
for this paper was arbitrarily chosen, and a detailed analysis is
required for an optimal selection of atmospheric gridding for a
forward model in the deterministic inverse framework.

The value of the error for finer grid RTLS can be reduced by
tuning the reference data set employing (17) and replacing the
A by Rkm, which is shown (“red square”) in Fig. 10(a). The
RTLS error from tuned reference data is reduced from 44–47%
to 13–20% (∼2.5 times) up to a height of 550 mb. While
such accuracies for WV retrieval are essentially unprecedented,
particularly for such a generalized profile set with such high-
frequency components, we would like to reiterate that such
“manipulated” error calculations can only assist in reporting a
“reduced number,” whereas the true error of the retrieved data
set remains unchanged. In practice, such approaches are widely
used, the scientific basis of which we consider somewhat
questionable.

The RMSE of OEM-T (“blue dot” with 10% a priori error)
is approximately an order of magnitude more than the a priori
error in the same scale. The OEM-T error, even using 1%
a priori covariance for this paper that is more than a priori error,
is very high compared to some recently published operational
validation statics [23]. This can be explained as we have not
applied any tuned validation approach, and as we mentioned
earlier, it is unfeasible to simulate all operational conditions,
e.g., dynamic variations both measurement adjustments and the
values of measurement error covariance using the same “model
minus observation,” which will also be used in the retrieval
(cf. [19]). From the deterministic point of view, “model minus
observation” has one piece of information at pixel level, and
the use of this value in three operations does not increase the
information content. Moreover, operational algorithms use both
a priori profile and covariance that are different for different
profile retrievals, as opposed to this paper where both these
parameters are fixed. Such validation studies (e.g., [18] and
[22]) often consider the a priori profile to be very close to the
truth within 2–3%, which translates to overstating the success
of the stochastic method in absolute terms and may end up
showing retrieval errors of 35–80% for a subselected data set
[23]. Under such a circumstance, the retrieval error of OEM-T
is therefore effectively 10–15 times higher than the a priori

error as implied by the error covariance used in the inverse
method, which is not dissimilar to the finding of this paper. We
have also recently reported similar results that OEM retrieval
error [43], [63] for operational SST (which is a fairly linear
problem where the condition number of Jacobian is less than
10) is higher than the a priori error. Many trace gases retrieval
studies show that the selected a priori within the domain of
a posterior error, which implies that the a priori error is less
than posterior error [59].

V. CONCLUSION

For more than two decades, operational retrievals from satel-
lite hyperspectral IR measurements have been dominated by
methods that are based on stochastic approaches where many
ambiguities are ubiquitous. This paper addresses such issues,
e.g., the truth is effectively known when both a priori and
a priori errors are known, by analyzing the inverse problem
from a deterministic point of view. To overcome these prob-
lems, we propose an alternate method, which is in the family of
deterministic inverse methods, namely, RTLS.

Based on the findings of this paper by theoretical discussion
and simulated experiments, we conclude that RTLS is one of the
most suitable inverse methods, which can be used for any highly
nonlinear remote sensing problem for extraction of quantitative
information. On the other hand, stochastic inversion techniques
are unable to produce unambiguous scientific information.
Moreover, without implementing a series of seemingly un-
objective ad hoc corrections, results from stochastic methods
often yield more errors than are present in the initial guess.

A number of remote sensing hyperspectral instruments are
onboard many research and operational satellites to understand
the Earth’s atmosphere and for climate studies. These instru-
ments provide an enormous amount of scientific data. Our
proposed inverse method offers a paradigm shift in operational
remote sensing and may open up a new scientific frontier for
unambiguously converting data to information from existing
and future missions. This paper is an initial step, showing a
comparative study using a relatively simple model. Solutions
for hyperspectral atmospheric profiles retrievals using RTLS
can be further improved by in-depth understanding of deter-
ministic inverse methods and information content analysis of
the retrieval model, as well as optimization of the atmospheric
grids, spectral windows, and channel selection for discretized
physical models.
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